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Multi-impurity effects on the entanglement of anisotropic
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The effects of multi-impurity on the entanglement of anisotropic Heisenberg ring XXZ under a homogeneous
magnetic field are studied. The impurities make the equal pairwise entanglement in a ring compete with
each other so that the pairwise entanglement exhibits oscillation. If the impurities are of larger couplings,
both the critical temperature and pairwise entanglement can be improved.
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Entanglement is not only the fabulous feature of quan-
tum mechanics but also very important to the quantum
information processing (QIP)[1]. In the studies of quan-
tum entanglement, solid state system with Heisenberg
model interaction is the simple and applicable candidates
for the realization of quantum information. Therefore,
there are many works focusing mainly on the different
kinds of Heisenberg models[2−21] such as spin ring etc..

The impurities often exist in solid system and play
a very obvious and important part in condensed mat-
ter physics. As a candidate of QIP, solid system with
impurity is also one of our important study objects.
In the previous researches, the impurity effects on the
quantum entanglement have been studied in a three-
spin system[22,23] and a large spin system under zero
temperature[24]. However, in these works, they have just
studied single impurity.

In this paper, we study the effects of multi-impurity
on the pairwise thermal entanglement in a ring chain.
It is found that the impurities make the equal pairwise
entanglement in a ring compete with each other. If im-
purities are of large couplings, the critical temperature
and the pairwise entanglement which coupled to the im-
purities can be improved. The results not only provide
a standard to judge impurities but also provide a way to
enhance entanglement and critical temperature.

Firstly, we investigate the multi-impurity effect when
the impurities are non-nearest neighbors as shown in
Fig. 1. For the case of Fig. 1(a), the Hamiltonian can be
written as

Fig. 1. Two configurations of spin ring when the impurities
are non-nearest neighbors. (a) Qubit ring formed with 10
qubits, the 4th and 6th are two identical impurities; (b) qubit
ring formed with 10 qubits, the 4th, 6th, and 8th are three
identical impurities. Square represents impurity qubit and
round stands for normal qubit.
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where (σx
i , σy

i , σz
i ) is the vector of Pauli matrices, J and

Jz are the real coupling coefficients of arbitrary nearest
neighboring two qubits. We restrict B ≥ 0 along z di-
rection and N + 1 = 1. Choosing the parameters B, J ,
Jz, and T are dimensionless and assuming the coupling
coefficients between normal qubit and impurity, one has
the relation

J ′ = α ∗ J, J ′
z = α ∗ Jz, (2)

where α characterizes the relative strength of the extra
coupling between the impurity and its nearest neighbor-
ing qubits[24]. For the case of Fig. 1(b), one can write it
easily following Eq. (1).

As we know, for a system in equilibrium at tempera-
ture T , the density operator is ρ = (1/Z) exp(−H/kBT ),
where Z = Tr[exp(−H/kBT )] is the partition function
and kB is Boltzman’s constant. For simplicity, we write
kB = 1. The value of entanglement between two qubits
can be measured by Concurrence C which is written
as[25−28]

C = max(0, 2 maxλi −
4∑

i=1

λi), (3)

where λi is the square root of the eigenvalues of the ma-
trix

R = ρ(σy
1 ⊗ σy

2 )ρ∗(σy
1 ⊗ σy

2 ), (4)

where ρ is the density matrix and the symbol * stands
for the complex conjugate. The Concurrence can be cal-
culated no matter whether ρ is pure or mixed. In the
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following, we just take the pairwise entanglement into
account. We will trace over the qubits and study the
reduced density matrix of the two qubits which we are
interested in.

Now, we review the difference between an ideal ring
chain and an open chain. For an ideal ring chain, every
qubit is of the same position with the others so that any
pairwise qubits are of the same amount of entanglement.
But for an ideal open chain, pairwise entanglement is
related to the position of the qubits and exhibit oscilla-
tions due to the breaking of the symmetries[24].

Because here we study multi-impurity, we cannot ob-
tain analytic expression of the system. We will directly
numerically calculate and plot entanglement. Figure 2
is the pairwise entanglement as a function of α, corre-
sponding to Figs. 1(a) and (b), respectively. For both
of the two cases, in the regions far away from impuri-
ties, the entanglements, for example C12 and C101, are
slightly affected by the various values of α. Within the
impurities regions, it is observed that there is the almost
same threshold value of α, after which a qubit and its
nearest impurity start entangling such as C34, C45 etc..
Figure 3 clearly shows the pairwise entanglement ver-
sus site i. If α is small, as shown in Fig. 3(a), the case
equals to cutting at the 4th and 8th, thus the 9-10-1-2-3
chain is similar to the open chain[24] while the part 4-
5-6-7-8 chain has no entanglement because of the weak
couplings. If α > 1 such as α = 2 shown in Fig. 3(b),

Fig. 2. The nearest neighboring Concurrences as function of
α for (a) the two-impurity model (the 4th and 6th are two
identical impurities) and (b) the three-impurity model (the
4th, 6th, and 8th are three identical impurities). T = 1,
B = 0.4, J = 1, Jz = 0.65.

Fig. 3. The nearest neighboring Concurrences as function of i
for the three-impurity model (the 4th, 6th, and 8th are three
identical impurities). (a) α = 0.1, (b) α = 2. T = 1, B = 0.4,
J = 1, Jz = 0.65.

the chain still can be cut into two parts because J ′ >
J . Within the pure regions, entanglement will compete
while in the part containing impurity, pairwise entangle-
ment still competes each other.

Figure 4 shows the influence of temperature and the
values of α on the entanglement in the three-impurity
model. From it, we can judge again that the second and
the third qubits are pure qubits while the third and the
forth contain one impurity. Usually, it is difficult to ad-
just the coupling coefficients, which means we will meet
with difficulty if directly using the behavior of Fig. 3 to
judge which one is impurity. But it still can be done by
measuring the Concurrence changed with temperature
(Refs. [29,30] proposed that Concurrence can be mea-
sured), because changing the temperature is very easy.
On the other hand, α can effectively enhance the Concur-
rence and critical temperature if α > 1 as shown in Figs.
3 and 4 clearly. By introducing impurities with large
coupling, one can also improve critical temperature and
entanglement. Therefore, this paper not only provides
a standard to judge impurity but also exhibits a way to
enhance entanglement and critical temperature.

Now we study the effect of the nearest neighboring im-
purities, as shown in Fig. 5, on entanglement. According
to Fig. 5(a), the Hamiltonian is
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with

J ′′ = β ∗ J, J ′′
z = β ∗ Jz, (6)

Fig. 4. The nearest neighboring Concurrences (a) C23 and
(b) C34 versus α and T for the three-impurity model (the 4th,
6th, and 8th are three identical impurities). B = 0.4, J = 1,
Jz = 0.65.



February 10, 2007 / Vol. 5, No. 2 / CHINESE OPTICS LETTERS 113

Fig. 5. Two configurations of spin ring with the nearest
neighboring impurity. (a) Qubit ring formed with 10 qubits,
the 5th and 6th are two identical impurities; (b) qubit ring
formed with 10 qubits, the 4th, 7th, and 8th are three iden-
tical impurities.

Fig. 6. The nearest neighboring Concurrences versus β for
(a) the two-nearest-impurity model (the 5th and 6th are two
identical impurities) and (b) the three-nearest-impurity model
(the 4th, 7th, and 8th are three identical impurities). B = 0.4,
J = 1, Jz = 0.65, α = 0.8.

where β characterizes the relative strength of the extra
coupling between the two nearest neighboring impurities
and J ′, J ′

z still have the relation of Eq. (2). Similarly, one
can write the Hamiltonian corresponding to Fig. 5(b).
Figure 6 plots the pairwise Concurrence near the two-
nearest-impurity qubits area as a function of β. From
it, we can see easily that the nearest neighboring impu-
rities coupling only affect the nearest two-impurity and
the others which couple with the impurities. For exam-
ple, in Fig. 6(a), the nearest neighbor impurity C56 has a
threshold value of β, affected by β heavily while C45 also
decreases as a result of the competition between neighbor
qubits. For the case of Fig. 5(b), although we have more
impurities, the nearest neighbor coupling only affects en-
tanglement of themselves C78 and that coupling with the
impurities C67, C89; and all the others pairwise entangle-
ment almost cannot be affected.

In conclusion, for a Heisenberg XXZ ring under a ho-
mogeneous magnetic field, we study the entanglement
in two-impurity and three-impurity under the two cases
of non-nearest-impurity and nearest-impurity. We find
that the introduction of impurities make the originally
equal pairwise entanglement compete with each other.
For the weak and strong α, we can cut the ring chain
into different open chains and then use the open chain
property to explain the competition. For the case with
the nearest neighbor qubits, the change of the relative
coupling β can only affect the qubits which couple to the
impurities. If introducing impurity with large α and β,

the pairwise entanglement, which couples with the impu-
rities directly, can be enhanced and the critical temper-
ature also will be improved.
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